自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

deephub

关注同名微信公众号,获取更多AI干货

  • 博客(31)
  • 收藏
  • 关注

原创 用神经网络解决拼图游戏

在一个排列不变性的数据上神经网络是困难的。拼图游戏就是这种类型的数据,那么神经网络能解决一个2x2的拼图游戏吗?什么是置换不变性(Permutation Invariance)?如果一个函数的输出不通过改变其输入的顺序而改变,那么这个函数就是一个排列不变量。下面是一个例子。1) f(x,y,z) = ax + by +cz2) f(x,y,z) = xyz如果我们改变输入的顺序,第一个函数的输出会改变,但是第二个函数的输出不会改变。第二个函数是置换不变量。神经网络的权值映射到特定的输入单元。

2020-07-31 08:44:49 5193

原创 为什么我们的神经网络需要激活函数

如果你正在读这篇文章,那么很可能你已经知道什么是神经网络,什么是激活函数,但是,一些关于机器学习的入门课程并不能很清楚地说明,为什么我们需要这些激活函数。我们需要它们吗?没有它们,神经网络还能工作吗?首先让我们回顾一下关于神经网络的一些事情。它们通常被可视化地表示为一个类似图表的结构,如下图所示:如上图所示,神经网络有3层:输入层、隐藏层、输出层,共3、4、2个神经元。输入层的节点数量与数据集的特性数量相同。对于隐藏层,您可以自由选择需要多少节点,并且可以使用多个隐藏层。网络中的每个神经元,除了

2020-07-30 08:58:29 4896 1

原创 使用神经网络为图像生成标题

我们都知道,神经网络可以在执行某些任务时复制人脑的功能。神经网络在计算机视觉和自然语言生成方面的应用已经非常引人注目。本文将介绍神经网络的一个这样的应用,并让读者了解如何使用CNNs和RNNs (LSTM)的混合网络实际为图像生成标题(描述)。我们在这个任务中使用的数据集是流行的flickr 8k图像数据集,它是这个任务的基准数据,可以通过下面的链接访问。Kaggle — https://www.kaggle.com/adityajn105/flickr8k注意:我们将把数据集分割为7k用于训练,1k

2020-07-29 09:01:30 6564 3

原创 如何利用机器学习和Gatsby.js创建假新闻网站

我们对错误消息并不陌生。假新闻和假标题并不是现代发明。甚至早在20世纪初就有了黄色新闻,它只是使用各种道德上有问题的策略来吸引人们购买报纸和其他媒体形式的注意力。在没有报纸订阅的情况下,公司必须为每一笔销售而战,而当你最好的营销方式是招牌和报童时,就需要通过新闻标题迅速形成强烈的印象。随之而来的是大量过度夸张的标题和缺乏研究的文章。听起来是不是很熟悉?我们生活在一个真理不再是非黑即白的世界。在我们生活的世界里,媒体明白,影响人们的最佳方式不是通过逻辑,而是通过情感。他们明白我们人类不是通过有意识的思考和.

2020-07-28 09:06:41 4361

原创 检测假新闻:比较不同的分类方法的准确率

这些推特是真的还是假的?他们肯定是假的。在7月15日时,Twitter出现了一个大问题,大账户被黑客入侵,要求比特币捐款,并承诺将捐款金额翻倍。所以即使这些推特是真实的,它们也包含了虚假信息。这不是第一次,也可能不是最后一次。但是,我们能阻止它吗?我们能阻止这种情况发生吗?问题问题不仅仅是黑客进入账户并发送虚假信息。这里更大的问题是我们所说的“假新闻”。假新闻是那些虚假的新闻故事:故事本身是捏造的,没有可证实的事实、来源或引用。当有人(或机器人之类的东西)冒充某人或可靠来源虚假传播信息时,也.

2020-07-27 09:06:21 4955

原创 在Python中使用Torchmoji将文本转换为表情符号

很难找到关于如何使用Python使用DeepMoji的教程。我已经尝试了几次,后来又出现了几次错误,于是决定使用替代版本:torchMoji。TorchMoji是DeepMoji的pyTorch实现,可以在这里找到:https://github.com/huggingface/torchMoji事实上,我还没有找到一个关于如何将文本转换为表情符号的教程。如果你也没找到,那么本文就是一个了。安装这些代码并不完全是我的写的,源代码可以在这个链接上找到。!pip3 install torch==1.0

2020-07-26 10:09:19 5312 1

原创 使用Keras构建具有自定义结构和层次图卷积神经网络(GCNN)

在生活中的某个时刻我们会发现,在Tensorflow Keras中预先定义的层已经不够了!我们想要更多的层!我们想要建立一个具有创造性结构的自定义神经网络!幸运的是,通过定义自定义层和模型,我们可以在Keras中轻松地执行此任务。在这个循序渐进的教程中,我们将构建一个包含并行层的神经网络,其中包括一个图卷积层。那么什么是图上的卷积呢?图卷积神经网络在传统的神经网络层中,我们在层输入矩阵X和可训练权值矩阵w之间进行矩阵乘法,然后应用激活函数f。因此,下一层的输入(当前层的输出)可以表示为f(XW)。在图卷

2020-07-25 09:19:36 7337 1

原创 快速介绍Python数据分析库pandas的基础知识和代码示例

“软件工程师阅读教科书作为参考时不会记住所有的东西,但是要知道如何快速查找重要的知识点。”为了能够快速查找和使用功能,使我们在进行机器学习模型时能够达到一定流程化。我创建了这个pandas函数的备忘单。这不是一个全面的列表,但包含了我在构建机器学习模型中最常用的函数。让我们开始吧!本附注的结构:导入数据导出数据创建测试对象查看/检查数据选择查询数据清理筛选、排序和分组统计数据首先,我们需要导入pandas开始:import pandas as pd导入数据使用函数pd.re

2020-07-24 09:31:14 5323

原创 卷积神经网络中的参数共享/权重复制

参数共享或权重复制是深度学习中经常被忽略的领域。但是了解这个简单的概念有助于更广泛地理解卷积神经网络的内部。卷积神经网络(cnn)能够使那些通过网络馈送的图像在进行仿射变换时具有不变性。 这个特点提供了识别偏移图案、识别倾斜或轻微扭曲的图像的能力。仿射不变性的这些特征是由于CNN架构的三个主要属性而引入的。局部感受领域权值共享(参数共享)空间子采样在本文中,我们将探索权值共享,并了解它们的用途以及它们在CNN架构中的优势。本文针对从事机器学习或更具体地说是深度学习的各个层次的

2020-07-23 08:48:55 7116

原创 为什么说神经网络可以逼近任意函数?

本文主要介绍神经网络万能逼近理论,并且通过PyTorch展示了两个案例来说明神经网络的函数逼近功能。大多数人理解“函数”为高等代数中形如“f(x)=2x”的表达式,但是实际上,函数只是输入到输出的映射关系,其形式是多样的。拿个人衣服尺寸预测来说,我们用机器学习来实现这个功能,就是将个人身高、体重、年龄作为输入,将衣服尺寸作为输出,实现输入-输出映射。具体来说,需要以下几个步骤:收集关键数据(大量人口的身高/体重/年龄,已经对应的实际服装尺寸)。训练模型来实现输入-输出的映射逼近。对未知数据进

2020-07-22 08:39:18 16783 9

原创 快速解释如何使用pandas的inplace参数

介绍在操作数据帧时,初学者有时甚至是更高级的数据科学家会对如何在pandas中使用inplace参数感到困惑。更有趣的是,我看到的解释这个概念的文章或教程并不多。它似乎被假定为知识或自我解释的概念。不幸的是,这对每个人来说都不是那么简单,因此本文试图解释什么是inplace参数以及如何正确使用它。让我们来看看一些使用inplace的函数的例子:fillna()dropna()sort_values()reset_index()sort_index()rename()我已经创建了这个列

2020-07-21 09:00:31 6195 3

原创 使用Yolov5进行端到端目标检测

最近,Ultralytics推出了YOLOv5,但它的名字却引发了争议。为了了解背景,《YOLO》(你只能看一次)的前三个版本是由约瑟夫·雷蒙(Joseph Redmon)创作的。在此之后,Alexey Bochkovskiy在darknet上创建了YOLOv4,号称比之前的迭代具有更高的平均精度(AP)和更快的结果。现在,Ultralytics已经发布了YOLOv5,具有可比的AP和比YOLOv4更快的推断时间。这就产生了许多疑问:新版本是否保证了与YOLOv4相似的准确性?无论答案是什么,这绝对是目标

2020-07-20 09:49:46 8912 3

原创 通过深度学习进行高频传感器故障检测和预测性维护

机器都会有故障和失灵。确定设备的状况或维护计划何时应该执行,是影响成本和生产力的极其战略性的决定。机器学习方法已经成为一种很有前途的工具,在预测维修应用,以防止故障在生产线。然而,这些解决方案的性能取决于适当的数据分析和选择正确的分析方法。在这篇文章中,我们面临着与之前其他相关文章一样的预测维护任务:使用CNN进行预测维护,使用CRNN进行预测维护。这里的特殊性在于,我们只使用一个单一的高频信号源来产生我们的最终预测。基于Mel-Frequency Cepstral Coefficients (MFCC

2020-07-19 09:32:58 7536 2

原创 深度学习模型压缩方法的特点总结和对比

了解用于深入学习的不同模型压缩技术的需求和特点不管你是计算机视觉新手还是专家,你可能听说过 AlexNet 于2012年赢得了ImageNet挑战赛。这是计算机视觉发展史上的转折点,因为它表明,深度学习模型能够以前所未有的精度完成非常困难的任务。但是你是否知道 AlexNet有6.2千万训练参数?另一个广为人知的模型 VGGNet 则有1.38亿训练参数,是AlexNet 的两倍之多。我们知道,模型层数越多,那么表现的性能越好,那么是否需要关注和强调参数的数量呢?知名CNN模型的复杂度和准

2020-07-18 10:24:37 7008 2

原创 人工智能的编年史——从开始到现在

人工智能的历史早在图灵之前,甚至早于计算机。从简单机器到人工智能的时间轴(非线性时间轴)。源自Apteo。​ 在关于人工智能的重要论文《计算机器与智能》(Computing Machinery and Intelligence)中,艾伦•图灵(Alan Turing)提出了一个著名的问题:“机器会思考吗?”——或者,更准确地说,机器能成功地模仿思维吗?​ 70年后,答案仍然是“不”,因为没有一台机器通过图灵测试。​ 图灵说过,他对那些“能够完成人类可以完成的任何操作”的机器感兴趣。换句话说,

2020-07-17 08:42:48 4991

原创 利用机器学习探索食物配方 通过Word2Vec模型进行菜谱分析
原力计划

介绍食物是我们生活中不可分割的一部分。据观察,当一个人选择吃东西时,通常会考虑食材和食谱。受食材和烹饪风格的影响,一道菜可能有数百或数千种不同的菜谱。网站上的菜谱展示了做一道菜所需要的食材和烹饪过程。但问题是,用户无法识别哪些菜可以用自己现有的食材烹饪。为了克服这些问题,机器学习方法能够根据用户可用的材料提出菜谱。因此,在我们进一步研究机器学习如何在食品工业中使用之前,让我们先了解更多关于自然语言处理(NLP)的知识。NLP是什么自然语言是指人类用来相互交流的语言。这种交流可以是口头的,也可以是文本

2020-07-16 08:36:18 5508

原创 如何在GPU上设计高性能的神经网络
原力计划

gpu对于机器学习是必不可少的。可以通过AWS或谷歌cloud轻松地启动这些机器的集群。NVIDIA拥有业内领先的GPU,其张量核心为Volta V100和安培A100加速哪种方法最适合你的神经网络?为了以最低的成本设计出最快的神经网络,机器学习架构师必须解决许多问题。此外,仅仅使用带有GPU和张量核心的机器并不能保证最高性能。那么,作为一个机器学习架构师,应该如何处理这个问题呢?当然,您不能是硬件不可知论者。您需要了解硬件的功能,以便以最低的成本获得最大的性能。作为一个机器学习架构师,你应该如何设计神

2020-07-15 08:52:09 5387

原创 各种形式的图神经网络的实现和基准测试
原力计划

本篇文章是论文的介绍性博客:Benchmarking Graph Neural Networks (https://arxiv.org/abs/2003.00982)的介绍性文章,有兴趣的可以下载原文阅读图0:在稀疏的2D张量上运行的GCN(顶部)和在密集的2D张量上运行的WL-GNN(底部)的标准实验。​ 图神经网络(GNN)如今在社会科学,知识图,化学,物理学,神经科学等的各种应用中得到广泛使用,因此,文献中的论文数量激增。​ 但是,在缺乏标准和被广泛采用的基准的情况下,衡量新模型的有效性和

2020-07-14 08:45:08 4677

原创 深入卷积神经网络:高级卷积层原理和计算的可视化
原力计划

在深度计算机视觉领域中,有几种类型的卷积层与我们经常使用的原始卷积层不同。在计算机视觉的深度学习研究方面,许多流行的高级卷积神经网络实现都使用了这些层。这些层中的每一层都有不同于原始卷积层的机制,这使得每种类型的层都有一个特别特殊的功能。在进入这些高级的卷积层之前,让我们先快速回顾一下原始的卷积层是如何工作的。原始卷积层在原始的卷积层中,我们有一个形状为WxHxC的输入,其中W和H是每个feature map的宽度和高度,C是channel的数量,基本上就是feature map的总数。卷积层会有一定

2020-07-13 08:48:14 6701 1

原创 进行图像增广的15+种功能总结和Python代码实现
原力计划

python代码可以自己扩充图像数据集。[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-oCTwnI4c-1594516091910)(./1.png)]​ 无论我们喜欢Keras还是Pytorch,我们都可以使用丰富的资料库来有效地增广我们的图像。 但是如果遇到特殊情况:我们的数据集结构复杂(例如3个输入图像和1-2个分段输出)。我们需要完全的自由和透明度。我们希望进行这些库未提供的扩充方法。​ 对于这些情况以及其他特殊情况,我们必须能够掌握我们自己的图.

2020-07-12 09:18:49 6924 4

原创 机器学习常见的损失函数以及何时使用它们
原力计划

每一个机器学习工程师都应该知道机器学习中这些常见的损失函数以及何时使用它们。在数学优化和决策理论中,损失函数或成本函数将一个或多个变量的值映射为一个实数,该实数直观地表示与该事件相关的一些“成本”。损失函数是机器学习算法中的一个重要部分,主要用于进行算法对特征数据集建模效果的评估,衡量算法的性能。损失函数是每个样本预测值和真实值的差值,而成本函数是所有损失函数的平均值。但是一般两者语义没有明显的区分。损失函数直接反映了机器学习模型的预测结果。一般而言,损失函数越低,所建立的模型所提供的结果就越好。

2020-07-11 09:27:44 4225

原创 使用PyTorch实现鸟类音频检测卷积网络模型
原力计划

以及为什么鸟类的声音检测对我们环境的未来如此重要介绍你听说过自动语音识别,你听说过音乐标签和生成,但是你听说过鸟的声音检测吗?大约在一年前,在我高二的时候,我第一次听到这种音频深度学习的用例。事实上,鸟音频检测是我做深度学习和计算机科学的第一个项目。我参与了一个研究项目,在北阿拉斯加的郊区用纯粹的声音来探测鸟类的存在。跳入其中,鸟的音频检测出现了这样一个利基(有利可图的形式),在本文中,我将向您展示如何在BirdVox-70k数据集上使用一个简单的卷积神经网络(CNN)来实现这一点。为什么鸟类的声

2020-07-10 08:40:17 9261 7

原创 Beam Search、GREEDY DECODER、SAMPLING DECODER等解码器工作原理可视化以及在自然语言生成领域的使用
原力计划

图像标注的任务让我们可以构建和训练一个为任何给定图像生成字幕的神经网络。在设计时使用了解码器的来完成文字的生成。当我们描述了每个解码器的工作原理时,我发现当它们被可视化时,更容易理解它们。图像标注任务流程图与翻译模型类似,我们的图像字幕模型通过输入图像张量和特殊的句首标记(即)来启动字幕生成过程。这个模型生成了我们单词的概率分布(实际上是logits)。橙色方框显示解码算法的选择,帮助我们选择使用哪个单词。然后,选择的单词和图像再次传递给模型,直到我们满足停止条件,即我们获得特殊的句子结束标记(即)作

2020-07-09 09:03:15 4134

原创 直观理解并使用Tensorflow实现Seq2Seq模型的注意机制
原力计划

采用带注意机制的序列序列结构进行英印地语神经机器翻译Seq2seq模型构成了机器翻译、图像和视频字幕、文本摘要、聊天机器人以及任何你可能想到的包括从一个数据序列到另一个数据序列转换的任务的基础。如果您曾使用过谷歌Translate,或与Siri、Alexa或谷歌Assistant进行过互动,那么你就是序列对序列(seq2seq)神经结构的受益者。我们这里的重点是机器翻译,基本上就是把一个句子x从一种语言翻译成另一种语言的句子y。机器翻译是seq2seq模型的主要用例,注意机制对机器翻译进行了改进。关于这

2020-07-08 08:48:33 4168

原创 在没有技术术语的情况下介绍Adaptive、GBDT、XGboosting等提升算法的原理
原力计划

这篇文章将不使用任何的术语介绍每个提升算法如何决定每棵树的票数。通过理解这些算法是如何工作的,我们将了解什么时候使用哪种工具。提升家庭有三名成员。它们是Adaptive Boosting(自适应提升)、Gradient Boosting(梯度提升)和XG Boosting.(极端梯度提升)。它将按顺序进行讨论。AdaboostAdaboost只用一个因素来判断一棵树的好坏——它的准确性。然而,这里有一个狡猾的转折。每棵树都由一组稍有不同的样本进行训练。所以?假设你正在准备SAT考试,考试分为四个部分

2020-07-07 08:45:25 4211 1

原创 在tensorflow2.2中使用Keras自定义模型的指标度量

使用Keras和tensorflow2.2可以无缝地为深度神经网络训练添加复杂的指标Keras对基于DNN的机器学习进行了大量简化,并不断改进。这里,我们将展示如何基于混淆矩阵(召回、精度和f1)实现度量,并展示如何在tensorflow 2.2中非常简单地使用它们。当考虑一个多类问题时,人们常说,如果类是不平衡的,那么准确性就不是一个好的度量标准。虽然这是肯定的,但是当所有的类新练的不完全拟合时,即使数据集是平衡的,准确性也是一个糟糕的度量标准。在本文中,我将使用Fashion MNIST来进行说明

2020-07-06 09:05:06 4549

原创 Meal Kit 的时间序列数据预测实践
原力计划

“今晚吃什么?”——这是经常困惑人们的问题之一。而Meal Kit 烹饪食材配送服务 则完美解决了人们的这一问题,为人们提供了一条非常便捷的方式,使得人们能够不用特意制定用餐计划和外出购物,就能够直接在家完成烹饪。Meal Kit 烹饪食材配送服务目前已经是一个15亿美元的市场,而且呈不断增长的趋势。四分之一的美国人都表示曾经使用过 Meal Kit 烹饪食材配送服务。该项目由哥伦比亚大学MS商业分析项目的Aditi Khandelwal、Amrita Dutta、Aneesh Goel和Simran

2020-07-05 10:42:45 3907

原创 使用TensorBoard进行超参数优化
原力计划

在本文中,我们将介绍超参数优化,然后使用TensorBoard显示超参数优化的结果。深度神经网络的超参数是什么?深度学习神经网络的目标是找到节点的权重,这将帮助我们理解图像、文本或语音中的数据模式。要做到这一点,可以使用为模型提供最佳准度和精度的值来设计神经网络参数。那么,这些被称为超参数的参数是什么呢?用于训练神经网络模型的不同参数称为超参数。这些超参数像旋钮一样被调优,以提高神经网络的性能,从而产生一个优化的模型。超参数的一个通俗的解释是:用来优化参数的参数。神经网络中的一些超参数是:隐

2020-07-04 09:08:07 5946

原创 自注意力机制(Self-Attention)的基本知识
原力计划

Transformers是机器学习(ML)中一个令人兴奋的(相对)新的部分,但是在理解它们之前,有很多概念需要分解。这里我们关注的是基本的Self-Attention机制是如何工作的,这是Transformers模型的第一层。本质上,对于每个输入向量,Self-Attention产生一个向量,该向量在其邻近向量上加权求和,其中权重由单词之间的关系或连通性决定。内容列表介绍自我关注-数学引用文章介绍Transformers是一种ML架构,已经成功地应用于各种NLP任务,尤其是序列到序列(seq

2020-07-03 09:06:17 8598

原创 深度学习中的模型修剪
原力计划

本文讨论了深度学习环境中的修剪技术。本在本文中,我们将介绍深度学习背景下的模型修剪机制。 模型修剪是一种丢弃那些不代表模型性能的权重的艺术。 精心修剪的网络会使其压缩版本更好,并且它们通常变得适合设备上的部署。本文的内容分为以下几节:函数和神经网络中的“非重要性”概念修剪训练好的神经网络代码片段和不同模型之间的性能比较现代修剪技术最后的想法和结论(我们将讨论的代码段将基于TensorFlow模型优化工具包)函数中的“不重要”概念神经网络是函数近似器。 我们训练他们来学习可构成输入数据

2020-07-02 09:13:33 5542 2

原创 Focal Loss详解以及为什么能够提高处理不平衡数据分类的表现
原力计划

不同γ设置的损失曲线Kaggle竞赛:SIIM-ISIC黑素瘤分类中,必须输出两类皮肤癌的皮肤病变图像中黑色素瘤的概率。因此它是一种二值图像分类任务。评价标准是AUC(曲线下面积)度量。首先,我研究了一个用交叉熵作为损失函数的模型。在网上搜索之后,我发现了这篇论文,Facebook AI research(FAIR)的团队引入了一个新的损失函数——Focal loss。我用这个损失函数得到了一个很好的AUC分数(92+),所以我决定讨论一下这个损失函数。目标检测器在讨论Focal Loss之前,让.

2020-07-01 09:34:36 8065

空空如也

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除