自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

deephub

关注同名微信公众号,获取更多AI干货

原创 手动搜索超参数的一个简单方法

深度学习是人工智能的一个分支,我们让模型自己通过特征学习并得到结果。我们不硬编码任何逻辑或算法,它会自动尝试特性之间的不同关系,并选择支持正确预测的最佳关系集。 我们并没有让模型盲目地尝试,而是设定了一些超参数。为了解释超参数,我们可以举一个孩子在IPad上玩的例子。你不能控制他/她在上面玩什么或...

2020-11-28 08:34:11 0

原创 PIFuHD简介:使用AI从2D图像生成人的3D高分辨率重建

关于这篇新文章的最酷的事情是,他们在Google colab上提供了一个演示,您可以在其中轻松地自己尝试一下,正如我将在本文中展示的那样! 但首先,让我们看看他们是如何做到的。 Facebook和南加州大学的研究人员最近推出了一篇名为“ PIFuHD: Multi-Level Pixel-Ali...

2020-11-27 09:19:58 2214 0

原创 在Pytorch中构建流数据集

在处理监督机器学习任务时,最重要的东西是数据——而且是大量的数据。当面对少量数据时,特别是需要深度神经网络的任务时,该怎么办?如何创建一个快速高效的数据管道来生成更多的数据,从而在不花费数百美元在昂贵的云GPU单元上的情况下进行深度神经网络的训练? 这是我们在MAFAT雷达分类竞赛中遇到的一些问题...

2020-11-26 09:16:13 2284 0

原创 10分钟了解图嵌入

知识图谱中的客户数据样本以及该图中附加的嵌入向量 去年,图嵌入在企业知识图谱(EKG)策略中变得越来越重要。 图形嵌入将很快成为在大型十亿顶点EKG中快速找到相似项目的实际方法。 实时相似性计算对于许多领域至关重要,例如推荐,最佳行动和队列构建。 本文的目的是使您直观地了解什么是图形嵌入以及如何使...

2020-11-25 09:42:33 2385 0

原创 再见卷积神经网络,使用Transformers创建计算机视觉模型

本文旨在介绍/更新Transformers背后的主要思想,并介绍在计算机视觉应用中使用这些模型的最新进展。 读完这篇文章,你会知道…… 为什么Transformers在NLP任务中的表现优于SOTA模型。 Transformer模型的工作原理 这是卷积模型的主要限制。 Transformers如...

2020-11-24 09:45:49 2579 1

原创 SEAM论文解读:弱监督语义分割的自监督等变注意力机制

语义分割是一项基本的计算机视觉任务,其目的是预测图像的像素级分类结果。由于近年来深度学习研究的蓬勃发展,语义分割模型的性能有了长足的进步。然而,与其他任务(如分类和检测)相比,语义分割需要收集像素级的类标签,这既耗时又昂贵。近年来,许多研究者致力于弱监督语义分割(WSSS)的研究,如图像级分类标签...

2020-11-23 08:55:05 2734 1

原创 特征选择介绍及4种基于过滤器的方法来选择相关特征

特征选择是面试中一个非常受欢迎的问题。 这篇文章能带你了解这方面相关的知识。 为什么要使用特征选择 你熟悉鸢尾花的数据集吗?(sklearn自带小型数据集)即使是最简单的算法也能得到如此美妙的结果,这难道不令人惊叹吗? 很抱歉让你失望了,但这是不现实的。大多数情况下,特征的数量§比样本的数量(N...

2020-11-22 10:07:41 2571 0

原创 Python和VizViewer进行自动驾驶数据集可视化

探索Lyft预测数据集与一个新的可视化工具包 (本篇文章动图超过了CSDN上传限制无法上传,所以请访问原文地址或关注我们的同名公众号deephub-imba查看) 介绍 作为最近发表的论文和Kaggle竞赛的一部分,Lyft公开了一个用于构建自动驾驶路径预测算法的数据集。数据集包括语义地图、自...

2020-11-21 11:26:38 3488 4

原创 Python中的时间序列数据可视化的完整指南

时间序列数据在许多不同的行业中都非常重要。它在研究、金融行业、制药、社交媒体、网络服务等领域尤为重要。对时间序列数据的分析也变得越来越重要。在分析中有什么比一些好的可视化效果更好呢?没有一些视觉效果,任何类型的数据分析都是不完整的。因为一个好的情节比20页的报告更能让你理解。因此,本文是关于时间序...

2020-11-20 10:00:15 2520 0

原创 PyTorch中的傅立叶卷积:通过FFT有效计算大核卷积的数学原理和代码实现

卷积 卷积在数据分析中无处不在。 几十年来,它们已用于信号和图像处理。 最近,它们已成为现代神经网络的重要组成部分。 在数学上,卷积表示为: 尽管离散卷积在计算应用程序中更为常见,但由于本文使用连续变量证明卷积定理(如下所述)要容易得多,因此在本文的大部分内容中,我将使用连续形式。 之后,我们将...

2020-11-19 09:10:42 2497 0

原创 神经网络中的损失函数正则化和 Dropout 并手写代码实现

在深度神经网络中最常用的方法是Regularization和dropout。 在本文中,我们将一起理解这两种方法并在python中实现它们 Regularization 正则化 正则化通过在损失函数的末尾添加额外的惩罚项来帮助防止模型过度拟合。 其中m是批次大小。 所示的正则化称为L2正则化...

2020-11-18 09:14:56 2465 0

原创 Pandas与SQL的数据操作语句对照

介绍 SQL的神奇之处在于它容易学习,而它容易学习的原因是代码语法非常直观。 另一方面,Pandas不是那么直观,特别是如果像我一样首先从SQL开始。 就我个人而言,我发现真正有用的是思考如何在SQL中操作数据,然后在Pandas中复制它。所以如果你想更加精通Pandas,我强烈建议你也采用这种方...

2020-11-17 09:09:24 2567 0

原创 通过数据分析找出Netflix最适合学习英语的电影和电视剧

分析Netflix的1500部电视剧和电影找出哪一部最适合学习英语。 截至2020年,Netflix上大约有3712部电影和1845部电视节目。如果你正在学习英语,有很多内容可以选择,但你可能没有时间看完所有的内容。这就是为什么需要数据科学技能来分析Netflix上最好的1500部电影和电视节目...

2020-11-16 08:58:29 2533 0

原创 孤立森林:大数据背景下的最佳异常检测算法之一

孤立森林或“iForest”是一个非常漂亮和优雅简单的算法,可以用很少的参数来识别异常。原始的论文对广大的读者来说是容易理解的,并且包含了很少的数学知识。在这篇文章中,我将解释为什么iForest是目前最好的大数据异常检测算法,提供算法的总结,算法的历史,并分享一个代码实现。 为什么iForest...

2020-11-15 10:26:01 2553 0

原创 Python手写决策树并应对过度拟合问题

介绍 决策树是一种用于监督学习的算法。 它使用树结构,其中包含两种类型的节点:决策节点和叶节点。 决策节点通过在要素上询问布尔值将数据分为两个分支。 叶节点代表一个类。 训练过程是关于在具有特定特征的特定特征中找到“最佳”分割。 预测过程是通过沿着路径的每个决策节点回答问题来从根到达叶节点。 基尼...

2020-11-14 08:51:08 2535 0

原创 用对线阶段数据分析和预测《英雄联盟》的游戏结果

使用来自大约10K游戏的前10分钟数据来预测高elo排名游戏的结果 介绍 《英雄联盟》是一款以团队为基础的战略游戏,两支拥有五名强大召唤师的队伍将面在峡谷中进行对决,而团队的目标是拆掉对方的基地。 一场典型的英雄联盟游戏通常需要持续30到45分钟,并且每个游戏可以分为三个阶段:对线阶段,中期和后...

2020-11-13 09:23:56 2565 0

原创 使用局部卷积对不规则缺失的图像进行修复的论文解读

今天,我想谈谈一篇很好的深层图像修复论文,它打破了以前的修复工作的某些限制。 简而言之,大多数以前的论文都假设缺失区域是规则的(即中心缺失矩形孔或多个小矩形孔),并且本文提出了局部卷积(PConv)层来处理不规则孔。 图1显示了使用建议的PConv的一些修复结果。 看样子还不错,那么 让我们一起了...

2020-11-12 09:26:01 2590 0

原创 使用Sentence Transformers和Faiss构建语义搜索引擎

介绍 您是否曾经想过如何使用Sentence Transformers创建嵌入向量,并在诸如语义文本相似这样的下游任务中使用它们? 在本教程中,您将学习如何使用Sentence Transformers和Faiss构建一个基于向量的搜索引擎。代码地址会在本文的最后提供 为什么要构建基于向量的搜索引...

2020-11-11 09:16:07 2625 0

原创 如何推导高斯过程回归以及深层高斯过程详解

使用不同核函数的高斯过程 高斯过程 像所有其他机器学习模型一样,高斯过程是一个简单预测的数学模型。像神经网络一样,它可以用于连续问题和离散问题,但是其基础的一些假设使它不太实用。 但是,过去5年左右的时间里,尽管没有多少人真正知道它们是什么,如何使用或为什么很重要,但该领域的研究却令人难以置信。像...

2020-11-10 09:08:53 2682 0

原创 DeOldify,这个开源的AI代码可以给你的黑白照片上色

DeOldify是一种技术,以彩色和恢复旧的黑白图像,甚至电影片段。它是由一个叫Jason Antic的人开发和更新的。这是目前最先进的黑白图像着色方法,而且所有的东西都是开源的。 首先,让我们看看他是如何做到的。它使用了一种名为NoGAN的新型GAN训练方法,该方法是他自己开发的,用来解决在使用...

2020-11-09 09:03:13 2661 0

原创 5分钟理解RELU以及他在深度学习中的作用

神经网络和深度学习中的激活函数在激发隐藏节点以产生更理想的输出方面起着重要作用。 激活函数的主要目的是将非线性特性引入模型。 在人工神经网络中,给定一个输入或一组输入,节点的激活函数定义该节点的输出。 可以将标准集成电路视为激活功能的控制器,根据输入的不同,激活功能可以是“ ON”或“ OFF”。...

2020-11-08 09:18:26 2603 0

原创 使用Pandas的resample函数处理时间序列数据的技巧

时间序列数据在数据科学项目中很常见。 通常,可能会对将时序数据重新采样到要分析数据的频率或从数据中汲取更多见解的频率感兴趣。 在本文中,我们将介绍一些使用Pandas resample()函数对时间序列数据进行重采样的示例。 我们将介绍以下常见问题,并应帮助您开始使用时序数据操作。 下采样并执行...

2020-11-07 08:46:02 2707 0

原创 FastFormers 论文解读:可以使Transformer 在CPU上的推理速度提高233倍

自Transformers诞生以来,紧随其后的是BERT,在几乎所有与语言相关的任务中,无论是问题回答,情感分析,文本分类还是文本生成,都占据着NLP的主导地位。 与RNN和LSTM消失的梯度问题(不影响长数据序列的学习)不同,Transformers在所有这些任务上的准确性更高。 RNN和LS...

2020-11-06 09:02:29 2724 0

原创 可变形卷积在视频学习中的应用:如何利用带有稀疏标记数据的视频帧

卷积层是卷积神经网络的基本层。虽然它在计算机视觉和深度学习中得到了广泛的应用,但也存在一些不足。例如,对于某些输入特征图,核权值是固定的,不能 适应局部特征的变化,因此需要更多的核来建模复杂的特征图幅,这是多余的,效率不高。体积膨胀,由于输出转换的接受野始终是矩形的,作为层叠卷积的累积 效应,接受...

2020-11-05 09:10:17 2572 0

原创 选择正确的错误度量标准:MAPE与sMAPE的优缺点

MSE,RMSE,MAE,MAPE,sMAPE…等等有大量不同的错误度量标准,每个错误度量标准都有其优点和缺点,并且涉及的案例比以前更多。 那么,如何决定要为我们的项目使用哪种指标呢? 我相信回答这个问题的关键是了解这些最流行的度量标准的优势和局限性。这样,我们就可以选择最适合手头任务的度量标准。...

2020-11-04 08:40:51 2645 0

原创 强化学习的最基本概念马尔可夫决策过程简介

在本文中我将介绍强化学习的基本方面,即马尔可夫决策过程。我们将从马尔可夫过程开始,马尔可夫奖励过程,最后是马尔可夫决策过程。 目录 马尔可夫过程 马尔可夫奖励过程 马尔可夫决策过程 马尔可夫过程 马尔可夫决策过程(MDP)代表了一种强化学习的环境。我们假设环境是完全可见的。这意味着我们拥有了当前状...

2020-11-03 09:46:42 2620 0

原创 在神经网络中提取知识:学习用较小的模型学得更好

在传统的机器学习中,为了获得最先进的(SOTA)性能,我们经常训练一系列整合模型来克服单个模型的弱点。 但是,要获得SOTA性能,通常需要使用具有数百万个参数的大型模型进行大量计算。 SOTA模型(例如VGG16 / 19,ResNet50)分别具有138+百万和23+百万个参数。 在边缘设备部署...

2020-11-02 09:06:56 2587 0

原创 初始化神经网络权重的方法总结

在本文中,评估了权值初始化的许多方法和当前的最佳实践 零初始化 将权值初始化为零是不行的。那我为什么在这里提到它呢?要理解权值初始化的需要,我们需要理解为什么将权值初始化为零是无效的。 让我们考虑一个类似于上面所示的简单网络。每个输入只是一个标量X₁,X₂X₃。和每个神经元的权重是W₁和W₂。每...

2020-11-01 11:06:28 2601 0

原创 机器学习中处理缺失值的9种方法

数据科学就是关于数据的。它是任何数据科学或机器学习项目的关键。在大多数情况下,当我们从不同的资源收集数据或从某处下载数据时,几乎有95%的可能性我们的数据中包含缺失的值。我们不能对包含缺失值的数据进行分析或训练机器学习模型。这就是为什么我们90%的时间都花在数据预处理上的主要原因。我们可以使用许多...

2020-10-31 11:01:04 2637 0

原创 使用PolyGen和PyTorch生成3D模型

介绍 深度学习研究的一个新兴领域是致力于将DL技术应用于3D几何和计算机图形应用程序, 对于希望自己尝试3D深度学习的PyTorch用户而言,一个叫Kaolin 库值得研究。 对于TensorFlow用户,还有TensorFlow Graphics库。 3D技术中一个特别热门的子领域是3D模型的生...

2020-10-30 09:12:51 2613 0

原创 时域卷积网络TCN详解:使用卷积进行序列建模和预测

CNN经过一些简单的调整就可以成为序列建模和预测的强大工具 尽管卷积神经网络(CNNs)通常与图像分类任务相关,但经过适当的修改,它已被证明是进行序列建模和预测的有价值的工具。在本文中,我们将详细探讨时域卷积网络(TCN)所包含的基本构建块,以及它们如何结合在一起创建一个强大的预测模型。使用我们...

2020-10-29 09:43:10 5096 3

原创 使用PandasGUI进行探索性数据分析

Pandasgui是一个开源的python模块,它为pandas创建了一个GUI界面,我们可以在其中使用pandas的功能分析数据和使用不同的功能,以便可视化和分析数据,并执行探索性数据分析。 探索性数据分析是最关键的部分,无论何时我们使用数据集时都要首先进行分析。它允许我们分析数据,探索数据的初...

2020-10-28 09:05:04 3396 0

原创 MCMC、蒙特卡洛近似和Metropolis算法简介

MCMC 是Markov Chain Monte Carlo 的简称,但在传统模拟中有一个很重要的假设是样本是独立的(independent samples),这一点在贝叶斯统计尤其是高纬度的模型中很难做到。所以MCMC的目的就是运用蒙特卡洛模拟出一个马可链(Markov chain)。 如今,...

2020-10-27 08:56:40 4219 3

原创 使用WebAssembly提高模型部署的速度和可移植性

在最近几个月中,我们已经帮助许多公司在各种环境中部署其AI / ML模型。 我们为医疗行业的模型部署做出了贡献,在过去的几个月中,我们已经帮助多家公司将经过训练的模型转移到不同类型的IoT设备上。 特别是在IoT设备情况下,要求通常很严格:计算周期数和可用内存通常都受到限制。 在本文中,我阐明了如...

2020-10-26 08:42:46 2589 0

原创 在python中使用KNN算法处理缺失的数据

在python中使用KNN算法处理缺失的数据 处理缺失的数据并不是一件容易的事。 方法的范围从简单的均值插补和观察值的完全删除到像MICE这样的更高级的技术。 解决问题的挑战性是选择使用哪种方法。 今天,我们将探索一种简单但高效的填补缺失数据的方法-KNN算法。 KNN代表“ K最近邻居”,这是...

2020-10-25 10:44:40 2696 0

原创 NLP任务中的文本预处理步骤、工具和示例

数据是新的石油,文本是我们需要更深入钻探的油井。文本数据无处不在,在实际使用之前,我们必须对其进行预处理,以使其适合我们的需求。对于数据也是如此,我们必须清理和预处理数据以符合我们的目的。这篇文章将包括一些简单的方法来清洗和预处理文本数据以进行文本分析任务。 我们将在Covid-19 Twitte...

2020-10-24 09:21:39 2687 0

原创 在TPU上运行PyTorch的技巧总结

TPU芯片介绍 Google定制的打机器学习专用晶片称之为TPU(Tensor Processing Unit),Google在其自家称,由于TPU专为机器学习所运行,得以较传统CPU、 GPU降低精度,在计算所需的电晶体数量上,自然可以减少,也因此,可从电晶体中挤出更多效能,每秒执行更复杂、强大...

2020-10-23 08:53:19 2774 0

原创 使用深度学习的方法进行人脸解锁

今天,我们将使用深度学习来创建面部解锁算法。 要完成我们的任务需要三个主要部分。 查找人脸的算法 一种将人脸嵌入向量空间的方法 比较已编码人脸的函数 人脸面孔查找和定位 首先,我们需要一种在图像中查找人脸的方法。 我们可以使用一种称为MTCNN(多任务级联卷积网络)的端到端方法。 只是一点技术...

2020-10-22 08:50:56 2624 0

原创 二分查找会更快吗?Python中的二分查找与线性查找性能测试

当您要检查某个元素是否在列表中时,有很多方法可以解决相同的问题。可以通过线性查找和二分查找来完成,但是要猜测哪个更快。 为什么? 如果你最近参加过面试,你就会知道二分查找是面试官的最爱。 您为什么要花时间学习二分查找? C ++编程朋友可能已经告诉过您。 Python很慢。 您想确保自己的程序不会...

2020-10-21 08:58:20 2646 0

原创 十分钟了解Transformers的基本概念

RNN已死,注意力万岁? 多年来,我们一直在使用RNN,LSTM和GRU解决顺序问题,您突然希望我们将其全部丢弃吗? 嗯,是!! 所有这三种架构的最大问题是它们进行顺序处理。 而且它们也不擅长处理长期依赖关系(即使使用LSTM和GRU的网络)。 Transformers 提供了一种可并行处理顺序数...

2020-10-20 08:46:27 2855 0

提示
确定要删除当前文章?
取消 删除